The ECCO Tool:
Extraction and Composition for Clone-and-Own

Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon and Alexander Egyed
Johannes Kepler University Linz, Austria
{stefan.fischer, lukas.linsbauer, roberto.lopez, alexander.egyed} @jku.at

Abstract—Software reuse has become mandatory for com-
panies to compete and a wide range of reuse techniques are
available today. However, ad hoc practices such as copying
existing systems and customizing them to meet customer-specific
needs are still pervasive, and are generically called clone-and-
own. We have developed a conceptual framework to support
this practice named ECCO that stands for Extraction and
Composition for Clone-and-Own. In this paper we present
our Eclipse-based tool to support this approach. Our tool can
automatically locate reusable parts from previously developed
products and subsequently compose a new product from a
selection of desired features. The tools demonstration video can
be found here: http://youtu.be/N6gPekuxU6o

I. INTRODUCTION

Companies often do not build one-of-a-kind software prod-
ucts, but rather develop a portfolio of similar product vari-
ants, each tailored to different customer requirements. These
products share a high degree of common functionality (i.e.
features) but still differ from each other to address different
customer needs. Software Product Lines (SPLs) address this
problem by providing a configurable system from which all the
desired product variants can be derived. However, SPLs require
a considerable upfront investment and are more complex to
evolve than one-off systems. Because of these drawbacks,
software companies refrain or delay the adoption of SPLs.
Instead, companies resort to an ad-hoc practice of clone-an-
own, where a new product variant is created by copying and
pasting artifacts from existing variants which are then modified
as necessary [1]. Clone-and-own consists of three informal
steps:

1) extraction that locates and extracts desired reusable
artifacts (e.g. code) from existing variants,

2) composition where the selected artifacts are
pasted/edited to create the new product, and

3) completion where the new product variant is adapted
to account for needs that did not exist thus far in any
previously available variant.

Clone-and-own lacks systematic methodology and tool sup-
port. Furthermore the extraction and composition processes
become more complex as new products are added and con-
sequently more error-prone.

In our previous work (see [2]], [3]) we presented an
approach for supporting and partially automating the clone-
and-own practice and allowing for a more systematic reuse.
We defined automated extraction and composition operators
that help software engineers reuse artifacts from previously
developed product variants in a clone-and-own manner and
provide support during the still manual completion by point-
ing software engineers to open issues that still have to be

addressed. Our approach has the advantage that software
engineers do not have to change their development practice.
They can continue to develop single product variants the
way they are used to but get automated support in doing
so. We demonstrated the basic feasibility of our approach by
performing an evaluation on five case studies. We found that
less than 20% of the existing product variants as input allowed
for the near optimal construction of new product variants (the
other 80% of available products, that were reconstructed by
reusing existing functionality). This paper presents a tool that
supports our previous work by integrating the defined operators
and providing a user interface for the whole workflow in the
form of an Eclipse-plugin.

II. TECHNICAL OVERVIEW

The conceptual framework behind ECCO has been already
published in [3]. In this section we give an overview of its main
ideas. Figure [I] shows that ECCO consists of two automated

steps the extraction @ and the composition @ and one
manual step the completion .

@ © @
R s

<,
K

+Hints
Incomplete new
Variant

Completed new
Variant

Fig. 1. ECCO Workflow

The starting point of our workflow is the set of product
variants . For each variant we assume the knowledge of
the features it implements and all the artifacts used in its
implementation. Artifacts can be anything from lines of source-
code (e.g. Java) to fragments of models or other system
engineering entities. The product variants are the input to
the extraction @ The result of this step is a database (DB)

@ consisting of traces (i.e. associations between features or
features interactions and artifacts), ordering of artifacts and
dependencies between traces. Next the composition @ uses
the database @ to generate a new product @, based on a
selection of desired features. New products can be incomplete
(e.g. because interactions among features have never occurred
before in any previous product variant). Therefore, a manual
completion @ has to be performed to finalize the product.

The resulting complete product variant @ can then be fed

http://youtu.be/N6gPekuxU6o

back to the extraction @ to refine the information stored in
the database @

As an illustrative example consider a set of drawing appli-
cations with the three variants in Figure [T] already available.
These three initial product variants have features for drawing
shapes, a feature for coloring them and a feature to wipe the
drawing are clean. The first variant shown at the top left corner
contains features LINE /~ and WIPE >¢. The second variant in
the middle has features LINE ./~ and COLOR ‘== and the third
variant has features LINE ./ , RECTANGLE [| and COLOR ‘=,
The product variants also have implementation artifacts (not
shown in the figure). Next we outline the mechanics of the
three steps of ECCO.

A. Extraction

The extraction @ incrementally adds product variants to

the database @, while comparing the new variants with the
information already stored in it. By finding commonalities and
differences in the features and artifacts of product variants, the
extraction can map features to corresponding artifacts. The
main assumption the extraction makes here is, that if two
products have features in common, then the artifact they have
in common trace to these features. Moreover, the extraction is
able to deal with feature interactions [2]]. Features interactions
refer to the fact that the implementation of a feature may
change depending on the presence or absence of other features.
For instance feature LINE is implemented differently if the
feature COLOR is also present in the product, because it must
then allow to define different colors for a line. In addition
the extraction stores the ordering of artifacts (e.g. the order
of statements within a method). Finally ECCO also deals with
references among artifacts (e.g. an expression accessing a field
has a reference to the field) and is able to extract dependencies
between features from these references and from the hierarchy
of artifacts.

B. Composition

The composition @ is to a greater extend the reverse

operation of the extraction . It merges extracted fragments
together based on selected features. The fragments are selected
not only by the features but the composition also takes feature
interactions into account. Moreover, even references between
artifacts and the order of artifacts are considered. The result
of the composition is a product consisting of the selected
features, as far as the extraction was able to distinguish them.
For features that could not have been extracted from the
previously implemented products ECCO also provides some
hints to guide the software engineer in the completion

step. For instance, in Figure (1| the composed product @ is

incomplete, symbolized by the red thunderbolt %, because
the feature interaction between features RECTANGLE and WIPE
is missing, as these two features have not appeared together
in a variant before.

C. Completion

The software engineer can use the hints about missing or
surplus features and feature interactions in the manual comple-
tion @ of the product. A missing hint shows which features

or feature interactions need to be potentially implemented,
because they were not present in any of the previous products.
A surplus hint tells the software engineer where features and
feature interactions could not be separated, and artifacts have
to be removed manually. Also the hints for references are
important to find artifacts that depend on other artifacts that
are missing in the composed product. Moreover, composition
can compute alternative orderings of artifacts which the user
can choose. After a product is completed @, it can be fed
back into the extraction, which will refine the database with
the gained knowledge.

III. USER EXPERIENCE

The tool is implemented as a plugin to the Eclipse IDE.
Therefore software engineers can use a platform with which
they can already be familiar. In this section we now describe
how our tool supports ECCO.

To start the workflow the user first creates a project and se-
lects the previously developed product variants as input. Com-
plete variants are displayed in the folder "Product-Variants” in
the tool, see Figure [2| part 1, in the ECCO navigator. For our
illustration we use a set of very simple drawing applications
containing just maximum four classes which implement up
to five features in a product variant. The tool automatically
performs the extraction on the variants. It is possible to view
the extracted trace information in the tool in the center of the
view, see part 2 Figure

Each trace is represented by one of the expanding boxes,
where the user can view the features and features interactions,
in a simplified form of feature algebra [2], and the artifacts
that trace to them. The feature algebra contains feature in-
teractions denoted like 0"(co)/d(c1)/.../d(cn), Where ¢; is F
(if feature F is selected) or —F (if not selected), and n is the
order of the interaction. For instance §*(rectangle)/d(wipe)
represents the feature interaction between features RECTANGLE
and WIPE. A feature interaction of order n thus represents the
interaction of n + 1 features. Hence an order of 0 represents
the implementation of a feature regardless of any interactions
with any other features (We called this a base module in [2],

(3D.

For easier navigation through the traces also the contained
features are displayed on the top line of each trace. To show the
user where the artifacts are located in the tree the tool utilizes
an outline view (see Figure [2| part 3) that shows the entire tree
containing a selected artifact (e.g. a class in Java). The outline
view allows users to find the location of a selected artifact
in the hierarchy and to navigate to the trace that contains the
artifact.

The next step in the workflow is to compose a new variant.
For that purpose the tool offers a view where the user is asked
to select the features the new product should have, see Figure[3]
part 1. The composition produces this product and its hints.
First, the tool requests to fix unresolved references. Next, it
displays the missing and surplus features and interactions, as
shown in Figure [3] part 2. For the surplus hints it is possible to
select a feature or a feature interaction and the tool displays in
the outline view the code that it traces to. Finally, the user is
asked to decide on the order of artifacts, see Figure [3] part 3.
The tool displays the possible orderings which the user can

» < toolPanel.add(lineButton)

+ < toolPanel.add(rectButton)

+ < toolPanel.add(wipeButton)

+ < contentPane.add(toolPanel, BorderLayout WEST)
+ < contentPane.add(canvas, BorderLayout.CENTER)

[#/] Code View | Skip | |Later| Apply

Features to Code Map | Compose

+ < toolPanel.add(lineButton)
» < toolPanel.add(wipeButton)
» < toolPanel.add(rectButton)
» < contentPane.add(toolPanel, BorderLayout WEST)
+ < contentPane.add(canvas, BorderLayout.CENTER)

3

it Qv vl vt = | 2 Quick Access I ﬁ|3’;’Java
B ECCO Navigator = B || 0Draw = 2 = o |5 Outline & ® = O
B% ¥ Features (3) [BASE, LINE, -RECT] ¥ A Mainjava.xmi 3
+ & Draw Modules (3 ¥ + 4 CompilationUnit Mainjava ~
4 (* Product-Variant 1 &
|g;omu -Variants E—— .
- 4 Field wipeText
g P2 Features (2) [BASE, LINE] ¥ . 4 Field wipeButton
P3 .
¥ Composed-Products Modules (3) 2 » 4 ClassMethod initAton
P 570(base)/ o 4 ClassMethod initCont
s~0(line)/ + 4 ClassMethod initListe
&1 (base)/5(LINE) » 4 Field WIDTH
T = . 4 Field HEIGHT
4 Field lineText
» 4 CompilationUnit Canvas.java . 4 Field lineButton
« 4 CompilationUnit Main java . 4 Field toolPanel
4 Packagelmport [javax, swing] . 4 Field canvas
4 Packagelmport [java, awt] © 4 Field contentPane
4 Packagelmport [java, awt, event] » 4 ClassMethod initLayo
4 Classifierlmport [java, util] . 4 ClassMethod init
» @ Class Main » 4 Constructor Main
» 4 CompilationUnit Line.java . % ClassMethod main
o 4 Field colors
Features (4) [BASE, COLOR, LINE, =WIPE] ¥ . 4 Field red
Modules (11) © 4 Field green
Code (208) ¥ v : 4 Field blue
4 Field black
Features to Code Map | Compose 4 Field colorsBox
Fig. 2. Tool perspective with ECCO Navigator view, Traces view and Outline view.
& Draw 2 = 8 = Qutline 2 B =
Mainjava.xmi
~
Product-Name: P4 1 Hint: Features/Interactions are missing! Code might « @ Class Main
N Descriot ~ 5" 1(rect)/&(WIPE) + 4 Field wipeText
ame escription : .
- P 51 (rect)/S(-COLOR) 2 4 Field wipeButton
| BASE shieilig)iher &§"2(base)/&(RECT)5(WIPE) . 4 ClassMethod initAton
COLOR select color to draw in &7 2(rect)/8(WIPE)S(LINE) 4 4 ClassMethod initCont
L 5"2(rect)/S(WIPE)S(-COLOR .
v | LINE draw line (rect)/S(WIPE)S() + 4 ExpressionStateme
| RECT . 5"2(rect)/5(~COLOR)S(LINE))
raw rec y 5~2(base)/5(RECT)S(~COLOR) + <+ ExpressionStateme
o | WIPF wining drawing area &3 (rect)/&(WIPE)&(-COLOR)S(LINE) o + % ExpressionStateme
Add Compose a9 B > + <+ ExpressionStateme
+ <~ ExpressionStateme

» < ExpressionStateme
< Void
< Public

» 4 ClassMethod initListe
+ 4 Field WIDTH

+ 4 Field HEIGHT

+ 4 Field lineText

+ 4 Field lineButton

+ 4 Field toolPanel

+ 4 Field canvas

< Field contentPane

Fig. 3.

choose from. Should none of these orders be the correct one,
the user can also choose a custom order by rearranging the
artifact via drag and drop.

After all the orderings are decided, the new variant will
appear in the ECCO navigator view in the folder "Composed-
Products”. From there, the new variant can be exported to an
arbitrary location on the used computer or into a new project.

Composition View with the provided Hints.

For instance, for Java code, the tool is able to generate a Java
project containing the products implementation. Therefore the

user can utilize the Java editor provided by Eclipse for the

manual completion of the product.

The completed product can be used in the tool again and
put in the folder “Product-Variants”. The extraction then uses
the new product variant to further refine the traces. Therefore,

the results of the composition will get better the more products
were already implemented.

IV. EVALUATION

We evaluated our approach on five case studies, which
are SPLs, ranging from 12 to 256 member products with
up to 344KLOC code sizes. The evaluation consisted of the
extraction of a random subset of the available product variants
for each case study as input (a subset of the 12 to 256 variants)
and the subsequent automated composition of all its remaining
variants, based on the selection of their features. The composed
variants were then compared with the original ones (the ones
that we did not use as input) to determine how closely the
composition matches the original products.

100 |- |
80
60 |-
40
20

O -

3
\

**‘X—-x\.x_

Precision
Recall

[%]

——

%
|

0 20 40 60 80 100
Input Products [%]

Fig. 4. Average Precision & Recall for Case Studies

In particular, we computed precision and recall of the
composed products. Precision reveals if there was surplus
code in the composed variants that would have to be deleted
manually after using our approach. Complementary, recall
indicates if there was any code missing from the composed
variants that would have to be added manually. The question
we answered was how good precision and recall would get
over time. In Figure] we see a summary of our findings
that show that both precision and recall increase quickly and
approach a near optimum with only about 20% of the available
products as input. This implies that once 20% of the variants
were known, the approach was able to generate the remaining
product variants nearly perfectly. However even with just a
few products ECCO can provide help for the software engineer
in reusing parts of previously developed products. With more
variants added to the database the results get even better, since
the extracted trace information gets more complete and precise.
For a more detailed evaluation of ECCO please refer to the
technical paper [3].

V. RELATED WORK

Rubin et al. proposed a conceptual framework for man-
aging product variants that are the result of clone-and-own
practices [4]. They outlined a series of operators that described
the set of processes and activities to manage software variants
in the different scenarios they encountered in their case studies.
The extraction and composition processes presented in this
work could be seen as an actual implementation of some of
their proposed operators.

Work by Kistner et al. defines variability mining as a
process that identifies features in legacy code and rewrites
them as optional or alternative features (i.e. that can be selected

from a group of features) to effectively construct an SPL from
a single legacy code base [3]]. This approach relies on domain
expert knowledge or standard feature location tools (as defined
by Dit et al. [6]) to find the seeds from which to start the search
for the complete code fragments that implement a feature.
They propose an iterative process where a developer drives
the search guided by variability-aware type checking, a form
of type checking that considers all valid feature combinations
of an SPL [7].

The tool FeatureIDE by Thiim et al. is a framework for
Feature-Oriented Software Development (FOSD) that provides
composition functionality for several FOSD implementation
techniques [8]].

Another tool by Kistner et al. called CIDE [9] helps to
decompose legacy applications into features by color coding
features in source code, hiding certain features and supporting
the analysis of interactions among features.

VI. CONCLUSION

We presented ECCO, a tool for supporting the practice
of clone-and-own in software engineering. ECCO enables
automated systematic reuse of existing arbitrary development
artifacts. Our tool is implemented as a plug-in for the Eclipse
IDE which is a well known development environment for
most software developers. Our evaluation demonstrated the
feasibility of our approach on five case studies.

ACKNOWLEDGMENT

This research was funded by the Austrian Science Fund
(FWF) projects PP25513-N15 and P25289-N15.

REFERENCES

[1]1 Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czar-
necki, “An exploratory study of cloning in industrial software product
lines,” in CSMR-17, 2013, pp. 25-34.

[2] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “Recovering trace-
ability between features and code in product variants,” in SPLC 2013,
Tokyo, Japan - August 26 - 30, 2013, T. Kishi, S. Jarzabek, and S. Gnesi,
Eds. ACM, 2013, pp. 131-140.

[3] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” in ICSME-30, 2014, pp. 391-400.

[4] J. Rubin, K. Czarnecki, and M. Chechik, “Managing cloned variants: a
framework and experience,” in SPLC, 2013.

[5S] C. Kistner, A. Dreiling, and K. Ostermann, “Variability mining: Con-
sistent semi-automatic detection of product-line features,” IEEE Trans.
Software Eng., vol. 40, no. 1, pp. 67-82, 2014.

[6] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53-95, 2013.

[7]1 C. Kaistner, S. Apel, T. Thiim, and G. Saake, “Type checking annotation-
based product lines,” ACM Trans. Softw. Eng. Methodol., vol. 21, no. 3,
p. 14, 2012.

[8] T. Thiim, C. Kistner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE: an extensible framework for feature-oriented software
development,” Sci. Comput. Program., vol. 79, pp. 70-85, 2014.

[9] C. Kistner, “CIDE: decomposing legacy applications into features,” in
SPLC 2007, Kyoto, Japan, September 10-14, 2007, Proceedings. Second
Volume (Workshops). Kindai Kagaku Sha Co. Ltd., Tokyo, Japan, 2007,
pp. 149-150.

